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1. Preface

I have prepared this note for my external reviewers to give you a picture of my
research program, how it fits into scholarly life at Creighton, and how it impacts
and is impacted by the other aspects of my job. My application for promotion
and tenure will be reviewed by two committees from across the university; in the
words of the College of Arts & Sciences R&T guidelines (para B3), the committees
will rely on “peers from appropriate scholarly disciplines ... to evaluate the quality
and extent of [candidates’] scholarly achievements according to the standards of the
candidates’ departments and recognized disciplinary expectations.” The standards
are summarized in Section 3.

In a forum for R&T applicants, we were encouraged to mention any external
factors which may have affected our research output. While at Creighton, I have
experienced a number of life events, including the births of my second and third
children, the loss of a parent, the loss of two additional pregnancies, and the general
disruption of COVID-19. I did not use maternity or FMLA leave beyond two weeks,
in part because my department has been short at least one tenure-stream faculty
member (out of 9) for most of my time here. I did not apply for pre-tenure sabbatical
for the same reason. I have also taught more extensively than I expected; I teach
3-3, and I have specialized in teaching upper division courses, with 15 sections in
14 semesters. This included 9 new preps; I designed the curriculum materials from
scratch for the 2 interdisciplinary courses (one with history and one with political
science), assembled materials for 2 more from multiple sources, and also created
the materials for our core liberal arts math course. Finally, I have participated in
service more heavily than expected as well, e.g., serving on 7 hiring committees.

2. Research Program

My research program is eclectic. The research environment at Creighton has re-
sulted in my exposure to a number of fields I had never expected to explore, and my
time supervising undergraduate research has turned my attention in new directions.
When fully staffed, my department has 9 tenure-stream faculty, including applied
math, data science, and statistics. I was not hired to be part of a pre-existing
research group, I was hired to be the topology/geometry representative and teach
upper division courses and supervise undergraduate research in those areas. As it
has worked out, I have supervised more students in discrete math (where I have
some background as well), but several of their projects have had a very topological
feel.

I have a few remaining topology questions which I work on between other distrac-
tions, including a foray into experimental knot theory (Section 2.3) and a question
on knot genus. One of my recent projects in graph theory grew out of supervising
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undergraduate research on an invariant from mathematical chemistry, the Randić
index (Section 2.5). I also returned to an old question of interest in graph theory
and made some recent progress (Section 2.4). Another project grew out of an inter-
disciplinary course I taught for our honors program on the mathematics of voting
theory, although it was also heavily influenced by a unit we teach in our liberal
arts math course, and it has, in turn, heavily influenced the way I rewrote material
for that course (Section 2.8). Two more projects grew out of discussions with a
colleague who specializes in algebra and fuzzy math: a paper on fuzzy algebra (Sec-
tion 2.6), and a pair of papers using a measure inspired by fuzzy math to analyze
world progress in sustainability (Section 2.7). A final project on matroids (still in
the early stages and so not discussed further here) is underway with my applied
math colleague and another collaborator.

2.1. Low-dimensional topology. My early research was in low-dimensional topol-
ogy, specifically Heegaard Floer theory. I still have several projects active, but they
have taken a back seat to joint projects with current colleagues or which grew out
of student research I supervised. I will briefly mention here those projects with
preprints or active submissions which have occurred while at Creighton.

Stephan Wehrli and I completed a project [DW] to show combinatorially the
homology cobordism classification of lens spaces; specifically, we showed that the
spin-c structures and d-invariants of lens spaces were isomorphic in the category of
torsors and functions exactly when the lens spaces were oriented homeomorphic,
i.e., we showed combinatorially that the d-invariants identify the homeomorphism
type of the lens space. The classification of the lens spaces was previously known,
but our proof is different because it is combinatorial (modulo the fact that the d-
invariants are cobordism invariants). As such, it falls into the old topology practice
of translating complex analytical or geometric results into combinatorial terns (see,
e.g., [MOS09, MOST07, MOT09]).

This article is currently with a referee at the NY Journal of Mathematics; while
the project began prior to my arrival at Creighton, shepherding it through the
peer-review process has been an on-going activity. When this paper is published,
we plan to continue the investigation with homology cobordism classification of
surgery on the trefoil, which is not known.

2.2. Math Toolkit. I have developed a math toolkit to calculate several invariants
in low-dimensional topology and graph theory. It runs on a private server and is
available for public use through a user-friendly GUI on my website [Doia].

This started when an early project of mine explored manifolds with finite funda-
mental group which can be realized as Dehn surgery on a knot in S3, particularly a
hyperbolic knot. The Heegaard Floer correction terms or d-invariants can be used
to obstruct such surgeries, and I conducted a computer search to look for excep-
tional surgeries. The resulting data provided enough intuition to prove the general
case [Doi15, Doi16]. I initially wrote very basic c code, but the desire to do larger
and larger examples resulted in a series of progressive improvements, including a
migration to c++. It is common within low-dimensional topology to make code
available to other researchers, but I knew from personal experience that it is not al-
ways easy to run or engage with someone else’s code, and there are topologists who
lack the time or proficiency. In 2019, with the help of an undergraduate assistant
who also contributed to the cord code, I set up the public toolkit.

http://doigmath.maderak.com/
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I have added to the toolkit several times since, most notably with a tool to
calculate the genus of a knot and whether it is fibered (note: I am not aware of
any other available computerized tools to calculate these invariants for an arbitrary
knot); a random knot generator and a few additional knot theory invariants behind
the project in Section 2.3; and Randić index and graph theory calculations behind
the project of Section 2.5. I anticipate adding further capabilities in future.

2.3. Experimental knot theory. I had used computer-assisted calculations for
years to inform my proof work, but it was not until one of my students proposed
some experimental graph theory as a summer project that I considered numerical
simulation as an end unto itself. I now have one active project to investigate the
distribution of invariants in the grid diagram model of knots [Doid]. Knots as
a probability space are an emerging area of topology, e.g., I will joining a Banff
workshop in 2024.

Understanding the normative or typical behavior of a knot and the distribution
of certain invariants has applications in a number of applied fields where knots
(and links) arise naturally, for example, the statistical mechanics of long-chain
polymers or the expected topological behavior of DNA. There are some assumptions
involved. A knot is typically defined to be an embedding S1 ↪→ S3, polymers and
DNA are often not closed loops, but they are effectively divided into large domains
where their ends are functionally fixed away from action, and the topology of these
strings appears to influence their behavior in nature, as, for example, the knotting
complexity of a polymer can affect its mobility when passing through a resistant
environment, as in electrophoresis (e.g., see [SKB+96]). An additional consideration
for DNA is that it is two-stranded, so it is perhaps better described by a framed
knot (a knot with a choice of longitude). Torsional stress on the molecule will often
convert any over- or under-twisting into supercoiling of the molecule, or writhe,
which may may be altered by and inhibit or promote certain genetic processes:
picture a pair of twisted headphone cords (the double helix), the ends fixed, and
insert your finger between the cords (the RNA polymerase, traveling down the
string to replicate it) and pull it from one end to the other, which will result in
positive supercoiling ahead and negative supercoiling behind your finger.

I conducted a study of the grid diagram as a knot model and explored writhe
with two other invariants, the size of a knot and the number of components. This
involved generating random knots and links by two different methods (one guaran-
teed to produce a single component, the other more representative of what a truly
“random” grid diagram could reasonably be). I produced generating functions to
verify the size and component count.

Theorem 1. [Doid, Theorem 5.3] A generating function for (1/(n!n!) times) the
number of n× n grid diagrams is

g(x) = (1− x)−1e−x

and for (1/(n!n!) times) the number of n×n grid diagrams representing k-component
links:

G(x, y) = (1− x)−ye−xy.

The writhe was significantly more complex, so I completed a thorough numerical
simulation and calculated others measures of the distribution.
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Observation 2. [Doid, Section 6] The writhe w of knots in an n×n grid diagram
for n ≤ 100 follows a distribution with trivial expected value and skewness and with
variance and kurtosis given by:

V ar(w) =
1

18
n2 κ(w) = 3.5.

This paper is being resubmitted (please see my website for current status).

2.4. Grid graphs and run length. Several of my papers live in or are inspired
by discrete math; while not a subfield of topology, the connections in habit and
approach between discrete math and low-dimensional topology are certainly well-
known and appreciated, and my own experience with graph theory research predates
my exposure to topology. One project relates to bounding the maximum run length
of a toroidal grid graph [Doib] (note that this paper had a precursor on the arXiv
from a 2003 REU project: a referee discovered an oversight in the main proof which
I was unable to close at the time; the paper as it stands now is predominantly new
work, including the resolution of the issue).

A toroidal grid graph is a graph Cartesian product of simple cycles, and a Hamil-
tonian cycle is a cycle which visits each vertex exactly once. The run length of such
a cycle in a grid graph is the minimum r so that any r adjacent edges come from
different factors of the product. The original example of a grid graph is the set of
k-bit binary words, which is the product of k 2-cycles; two such words are adja-
cent if they differ in exactly one coordinate. A Hamiltonian cycle in this graph is
a listing of all the words in such a way that any two adjacent ones differ in only
one place, and its run length is the minimum spacing between changing a single
bit twice. Such a listing is useful for applications like electronic position-to-digital
converters, which use these cycles both to enable error-detection and to minimize
movement of a detector head.

The maximum possible run length (or mrl) in a grid graph of k-bit binary words
was bounded first [GLN88, GG03], and the grid graphs with maximum run length
at least 2 have been classified [RS03]. I studied higher maximum run lengths. In
particular, I demonstrated a family of Hamiltonian cycles of nearly ideal run length
(one less than the dimension, which is a hard upper bound) for the graphs where
all factors were the same size. Additionally, I developed a technique to decompose
a grid graph into a product of smaller grid graphs and combine their Hamiltonian
cycles in a consistent way to form a cycle in the original graph which is both a
simple cycle (as opposed to a union of disjoint cycles) and whose edges are chosen
so the run length is at least as large:

Theorem 3. [Doib, Theorem 5.1] Let G1 and G2 be grid graphs with orders n1
and n2. If there exist s1 and s2 such that gcd(n1, n2) = s1 + s2 and gcd(si, ni) = 1,
then

mrl (G1 ×G2) ≥ min

⌊
s1 + s2
si

mrl (Gi)

⌋
.

I also developed several explicit theorems applying these techniques to demon-
strate several families which have run length at least 3, as well as bound the maxi-
mum run length of other families, including:

Theorem 4. [Doib, Theorem 6.1] Let G be a toroidal grid graph with k terms which
share a common prime factor. Then

mrl(G) ≥ k − 1.

http://doigmath.maderak.com/site/tenure.html
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This project is undergoing final edits before submission. Please see my website for
updates.

2.5. Blocks and mathematical chemistry. In another project in discrete math,
I proved graph radius bounds the Randić index for cactus graphs, in the process
studying the relationship between eccentricity and the block structure of a generic
graph [Doic]. I stumbled upon this project accidentally after I confidently pro-
claimed to a colleague it would be easy to find an undergrad research project in
mathematical chemistry - and a student showed up in my office a few days later.
She ended up working on the Randić index.

The Randić connectivity index is a graph theory invariant originally designed
to study the branching of molecules. It is experimentally verified to be associated
to boiling and reactivity of hydrocarbons and is now used for predicting biolog-
ical activity, physicochemical properties, and toxicological responses of chemical
compounds based on their molecular structure (see, for example, [KH86, Pog00,
GDGdJOP08, TC08, KH76]). If G is a graph showing the structure of a molecule,
then define

R(G) =
∑

[u,v]∈E(G)

1√
deg(u) deg(v)

where [u, v] runs over all the edges of the graph.
The Randić index is worth studying from a graph theoretic point of view, in

particular because it identifies a type of branching not easily encapsulated by other
invariants. A computer prediction program first identified a possible link to graph
radius [Faj88], although it has been resistant to repeated efforts to prove it.

A graph is imbued with a metric which measures the minimum number of edges
in a path between vertices, and the eccentricity of a vertex is the maximum distance
to any other vertex. The maximum eccentricity is the diameter of the graph, and
the minimum is its radius (and a vertex realizing that minimum is a center).

A block is a maximal subgraph which cannot be disconnected by removing any
one vertex, and a separating vertex is a vertex whose removal would disconnect the
graph. Any graph may be decomposed into distinct blocks which overlap with their
neighbors at separating vertices, and this structure is described in something called
the block-cut-tree or BC-tree.

I extended the concepts of eccentricity, radius, center, and related concepts to
blocks and studied their relationship to the traditional concepts. In particular, I
demonstrated a method to find a subgraph of a given graph with minimal BC-tree
but the same radius and center. I refined a famous and very old result that the
radius and diameter bound one another, rad(G) ≤ diam(G) ≤ 2 rad(G).

Theorem 5. [Doic, Theorem 4.1] If there are multiple central blocks in a graph G,
then

diam(G) = 2 rad(G).

If there is a unique central block B of diameter diam(B), then

2 rad(G)− diam(B) ≤ diam(G) ≤ 2 rad(G)

with the lower bound realizable.

As a consequence of these results, I verified the conjectured bound on the Randić
index for the family of cactus graphs (whose blocks have a simple structure).

http://doigmath.maderak.com/site/tenure.html
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Theorem 6. [Doic, Theorem 5.7] If G is a cactus graph but not an even path,

R(G) ≥ rad(G).

This project is undergoing a rewrite and will be submitted soon. Please see my
website for updates.

2.6. A fuzzy approach to algebra. My two most recent research projects have
involved a foray into the realm of fuzzy math. This field primarily lives in computer
science and applied math; it began in the 1960s as a response to early difficulties
in natural language processing. Traditionally, set theory allows an item either to
belong to a set or not (the membership function takes the values of 0 or 1), for
example, a book is either in the set “fewer than 100 pages,” or it is not. Fuzzy set
theory, on the other hand, allows a concept of partial membership: something may
be partially in a set, for example, a book may be 34% in the set of “good books.”

More formally, a fuzzy subset of a space A is the set A along with a grade function
µ : A→ [0, 1] [Zad65]. There are similar fuzzy concepts of groups, homomorphisms,
and modules [Pan87, ZA94, ZA95]: a fuzzy left R-module (M,µ) is a left R-module
M with a function µ : M → [0, 1] satisfying a set of conditions making it compatible
with the module operations (e.g., µ(x + y) ≥ min(µ(x), µ(y)), and µ(0) = 1).
Another fuzzy R-module (N, ν) is a fuzzy R-submodule of the first if N ⊂ M and
ν(x) ≤ µ(x) for all x ∈ N .

The set of fuzzy modules and homomorphisms together form a category, and
some of the normal category-theoretic concepts like injective modules carry through.
D. S. Malik and I extended the concepts of essential extensions and injective hulls
to the fuzzy category [DMa]. An essential extension of a fuzzy R-module (N, ν)
is another fuzzy R-module (M,µ) with the property that every nonzero fuzzy R-
submodule of (M,µ) has nontrivial intersection with (N, ν), and an injective hull is
an injective essential extension. In traditional module theory, it is equivalent for a
module to be injective; to be a direct summand of every extension of itself; and to
have no proper essential extensions. Additionally, for a submodule N of a module
M , it is equivalent for M to be an essential injective extension, a maximal essential
extension, or a minimal injective extension; further, given any N , such an M exists.
These results carry partially into the category of fuzzy modules:

Theorem 7. [DMa, Theorems 21-22] Let (M,µ) be a nonzero fuzzy R-module. The
following are equivalent:

• (M,µ) is injective.
• M = supp(µ) and (M,µ) is a direct summand of every extension of itself.
• (M,µ) has no proper essential extension.

Theorem 8. [DMa, Theorems 28, 31-32] If M = supp(µ) and (N, ν) is a fuzzy
R-submodule of (M,µ), then the following are equivalent:

• (M,µ) is an essential injective extension.
• (M,µ) is maximal essential extension.
• (M,µ) is a minimal injective extension.

Further, if N = supp(ν), then the fuzzy R-submodule (N, ν) has such an injective
hull (M,µ).

We also demonstrated examples of N 6= supp(ν) without injective hulls, although
the conditions of the theorem above may be satisfied even for fuzzy R-modules of
smaller support.

http://doigmath.maderak.com/site/tenure.html
http://doigmath.maderak.com/site/tenure.html
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This article is currently submitted to Fuzzy Sets and Systems.

2.7. A fuzzy approach to sustainability. D. S. Malik and I also conducted
an analysis of sustainable development using a method ultimately derived from
by fuzzy math [DMb, DMc]. In 2015, the UN Member States adopted the 2030
Agenda for Sustainable Development, which includes 17 Sustainable Development
Goals. The UN Statistics Division collects data and assesses progress in these
Goal areas, and their conclusions are summarized in an annual report from the
Secretary-General which is used at a high level to inform international action and
policy development.

We employed a measure based on a concept from fuzzy math (the t-norm) to
provide an alternate analysis of the data which is very sensitive to changes in the
variables over time. Infima and suprema are prevalent in fuzzy math, beginning
with the definition of set intersections and unions (e.g., the intersection of two
fuzzy subsets is the infimum of their grade functions), and Mordeson and Mathew
introduced a t-measure to sustainability studies [MM21]. If S is a set of values
between 0 and 100, define

t(S) =


max{s : s ∈ S} if all s < 50

min{s : s ∈ S} if all s > 50

50 else

This measure is particularly suited to a time-series analysis of the UN Sustainable
Development Data: a set of variables was identified for each Goal area, and the
variables were scored between 0 (the 2.5th percentile) and 100 (fully complying
with the 2030 Agenda). The standard analysis consists of averaging each of these
variables to give a score for the Goal area, but applying the t-measure instead
yields something different and quite interesting. Many of these sets of variables
clump for different countries: a country doing well in climate action tends to be
(but is not always) doing well in most of the climate action variables, while a
country doing poorly in gender equality tends to be doing poorly in most of its
variables. The t-measure acknowledges this. If all variables are scored highly for
a country, then it selects the lowest; if all are scored poorly, it selects the highest;
if, however, a country has mixed high and low scores for variables, the measure
returns a placeholder score of 50. If the variables are moving over time as a group
from low to high (or vice versa), then this will, in fact, select a leading variable
initially, track it upwards to 50, then stall at 50 to indicate a transitional period
as the other variables move, then finally track the lagging variable as the entire
set climbs above 50. This characteristic makes it especially valuable for time-series
analysis as it detects initial or final movement in a group of variables which would
be muted by the use of traditional mean.

We include as an example in Figure 1 a graph of Sudan and its development
in Goal 9 (Industry, Innovation, and Infrastructure): the score from the t-measure
started in the low teens, dropped under 10, and then climbed into the upper 30s.
Examining the variables, we see that it initially tracked the leading variable R&D
expenditure, which was responsible for the decrease, but it recovered strongly when
several variables increased noticeably over this period, led by mobile broadband
usage, which the t-measure score actually tracked. A mean would have recorded
the climb in this case, although it would been muted slightly by the non-reactive
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Figure 1. Variable scores for Sudan in Goal 9, Industry, Innova-
tion, and Infrastructure, from 2000 to 2022.

variables; this measure is even more valuable in cases where a single, early-warning
variable begins to climb before the others move.

When applied to 17 Goal areas for 163 countries, the t-measure detected a large
number of trends which were less visible in the traditional analysis and highlighted
general worldwide progress (or lack thereof) in sustainable development. We also
built an index score for each country based on its Goal scores and examined char-
acteristics of strongly and weakly performing countries and evaluated the impact
of income category and geographic region on sustainable development. This body
of results is not meant to substitute for the UN’s analysis but rather to provide an
additional perspective and indicate some patterns which are worth discussing.

This project involved an application of an intriguing and somewhat surprising
useful function to analysis of a very significant and well-studied body of data.
Several other groups have applied techniques from fuzzy math to data analysis, but
none have approached the UN sustainability data on such a wide scope or with the
detailed time series analysis we employed. In technique, it is not closely related
to my other work, but it borrowed heavily off data analysis skills I learned from
teaching them, and I will be incorporating this and related datasets in my classes in
future, although perhaps on a more surface level. It can only benefit my students
and the world for our community to be learning to understand and interact with
large datasets and to apply critical quantitative reasoning to a topic as significant
as sustainable development.

These two articles are currently submitted to New Mathematics and Natural
Computation.

2.8. Voting theory. A very surprising recent project was a foray into voting the-
ory, more properly called social choice theory. Since before I arrived at Creighton,
we have taught a unit on voting theory in our course MTH 205 (Math for the Mod-
ern World) taken by humanities majors, nursing students, and some social science
students. The mathematical study of elections involves analyzing the precise struc-
ture of voting systems, considering how its rules will result in different outcomes



RESEARCH PROFILE 9

based on the makeup of the electorate. This topic is often included in similar lib-
eral arts-style core math courses for two primary reasons: first, an informed citizen
should know something about the functioning of electoral systems, and we strive
to select topics which are relevant to our students’ lives; second, it provides an
avenue for teaching logic and logical thinking in a very concrete way which can be
more effective for the students. I also developed a new, interdisciplinary mathe-
matics and political science course for our honors program (part of a series entitled
“Sources and Methods”) consisting of a mathematical analysis of voting theory and
an examination of its historical development.

I rewrote the course materials for MTH 205 for use by the whole department,
producing a set of interactive worksheets to guide student progress in class. I
thought extensively about this section and the ideal way to teach it, especially
after teaching some of the same material from a different perspective in the honors
course and seeing its historical development. One particularly influential figure was
Nicolas de Caritat, marquis de Condorcet, an Enlightenment thinker who was as
much philosopher as mathematician. He was not the first mathematician to study
voting systems, but he was the first to rigorously review multiple systems for their
logical soundness and to consider them explicitly as objects which convert an input
(a set of voters’ preferences) to an output (a collective decision) which must be
reasonably responsive to its input.

I wrote an article [Doi23] to describe how we use voting theory to satisfy our
teaching objectives, primarily in teaching logic, and to explore how Condorcet’s
particular contributions to the field are reflected in our curriculum today. For ex-
ample, we talk in class about fairness, not in the sense of unrestricted access to
electoral mechanisms, but in the sense of determining what kinds of election out-
comes are faithful to the individual voters’ preferences. We consider many possible
sets of input values, some with only slightly varying conditions, and we discuss how
the differences can (and ought) to be reflected in the outcome. Early writers had
given examples when they described voting systems, but Condorcet was the first
to consider the pairing of possible input and output values explicitly as we do in
class. He was also the first to do our next activity, namely, we test specific voting
systems against particular inputs and check whether the outcomes seem reasonable.
Condorcet phrased his analysis of these outcomes using very logical language. For
example, he argued that, if a voting system ranks candidate A over B when con-
sidered in isolation, and ranks B over C in isolation, then it ought to rank A over
C when all three candidates are considered together. Today we call this transitivity
or independence, and we teach it as one of four logical criteria for fairness. This
entire exercise quietly teaches a series of important concepts to our students: the
difference between a statement and it converse (there is a particularly strong type
of candidate called a Condorcet winner, and one of the criteria says, “A Condorcet
winner will win the election,” which is not the same as, “The election winner will
be a Condorcet winner”); the difference between “there exists” and “for all” (“A
Condorcet winner will win” vs “The Condorcet winner will win”); even the dif-
ference between “proof by example” and “proof by counterexample” (“Does the
plurality system satisfy the Condorcet Criterion? No? OK, is it enough just to give
an example?”).
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This article is scheduled to appear this summer in XVIII New Perspectives on
the Eighteenth Century. A second research idea stemmed from the voting theory
course which I hope to have time to pursue in future.

3. Standards

These are the Department of Mathematics and Division of Science guidelines for
evaluating scholarship for tenure and promotion to associate professor which the
two R&T committees will evaluate for me with your help.

A trajectory of scholarship, including 3-4 peer-reviewed publications
since coming to Creighton. The actual number expected will depend
on factors such as the importance and extent of the work and other
professional demands placed on faculty member’s time.

I have 5 peer-reviewed publications, 1 of which has appeared since coming to
Creighton, and 3 more currently undergoing the peer-review process (although that
number should soon increase). I will leave it to others to judge their importance,
but I believe that each of my articles contributes something to the academic or
wider world.

I also have 3 non-peer-reviewed products, a toolkit of implemented topology
operations; an editorial on statistic-based risk management; and a set of curriculum
materials for a liberal arts math class. While not peer-reviewed publications, they
constitute a meaningful part of my research life and a way that I am active in the
world as a scholar.

Please refer to my website for current status and copies of all publications, in-
cluding preprints.

Note to the reviewers: There is no restriction on the subject matter of publica-
tions, merely that they be “peer-reviewed,” “scholarly,” and “relevant to the disci-
pline”; in particular, they may be interdisciplinary, and acceptable topics include
“scholarship of the discipline,” as the article on Condorcet is.

A record of presentations at regional and national professional meetings,
or external department colloquia, typically averaging 1 per year.

Since coming to Creighton, I have averaged 1.1 external department colloquia
or presentations at regional/national meetings per year, in addition to a few more
expository external presentations; this was lower than my pre-Creighton average of
2.2/year because of COVID-19 and having two more children.

Note to the reviewers: It is unclear from the guidelines whether department col-
loquia count as research presentations the way that conference talks do. The R&T
committees may appreciate any insight you can provide into the norms for the field.

Submission of one or more grant applications, including one or more
extramural applications since coming to Creighton.

I received a Summer Faculty Research Fellowship from Creighton University,
which funded me and an undergraduate assistant for the summer. While a postdoc,
I received an NSF-AWM travel grant and applied for an NSF research grant. I plan
to apply for an additional travel or similar grant this fall.

http://doigmath.maderak.com/site/tenure.html
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Note to the reviewers: The R&T committees have indicated that they will look
to the external reviewers to help them determine what variety of grants would be
normal for someone like me (13 years out of grad school with a 3-3 teaching load
and no grad students), whether a traditional NSF grant or something more similar
to the NSF-AWM travel grant.

Additional factors, such as successful inclusion of undergraduate stu-
dents into research; record of service to the discipline, including as a
peer-reviewer or conference organizer.

I have supervised 6 Creighton undergraduates performing research and assisted
with 1 more; 2 have presented research posters, 1 contributed code to my math
toolkit, and 2 are preparing articles for submission.

Since coming to Creighton, I have served as a peer-reviewer twice and as a
textbook reviewer once and helped organize a conference special session once.
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